Source code for neuroconv.datainterfaces.ophys.baseimagingextractorinterface

"""Author: Ben Dichter."""

from typing import Literal, Optional

import numpy as np
from pynwb import NWBFile
from pynwb.device import Device
from pynwb.ophys import ImagingPlane, OnePhotonSeries, TwoPhotonSeries

from ...baseextractorinterface import BaseExtractorInterface
from ...utils import (
    DeepDict,
    dict_deep_update,
    fill_defaults,
    get_base_schema,
    get_schema_from_hdmf_class,
)


[docs]class BaseImagingExtractorInterface(BaseExtractorInterface): """Parent class for all ImagingExtractorInterfaces.""" keywords = ( "ophys", "optical electrophysiology", "fluorescence", "microscopy", "two photon", "one photon", "voltage imaging", "calcium imaging", ) ExtractorModuleName = "roiextractors" def __init__( self, verbose: bool = False, photon_series_type: Literal["OnePhotonSeries", "TwoPhotonSeries"] = "TwoPhotonSeries", **source_data, ): super().__init__(**source_data) self.imaging_extractor = self._extractor_instance self.verbose = verbose self.photon_series_type = photon_series_type
[docs] def get_metadata_schema( self, ) -> dict: """ Retrieve the metadata schema for the optical physiology (Ophys) data. Returns ------- dict The metadata schema dictionary containing definitions for Device, ImagingPlane, and either OnePhotonSeries or TwoPhotonSeries based on the photon_series_type. """ metadata_schema = super().get_metadata_schema() metadata_schema["required"] = ["Ophys"] # Initiate Ophys metadata metadata_schema["properties"]["Ophys"] = get_base_schema(tag="Ophys") metadata_schema["properties"]["Ophys"]["required"] = ["Device", "ImagingPlane", self.photon_series_type] metadata_schema["properties"]["Ophys"]["properties"] = dict( Device=dict(type="array", minItems=1, items={"$ref": "#/properties/Ophys/definitions/Device"}), ImagingPlane=dict(type="array", minItems=1, items={"$ref": "#/properties/Ophys/definitions/ImagingPlane"}), ) metadata_schema["properties"]["Ophys"]["properties"].update( { self.photon_series_type: dict( type="array", minItems=1, items={"$ref": f"#/properties/Ophys/definitions/{self.photon_series_type}"}, ), } ) # Schema definition for arrays imaging_plane_schema = get_schema_from_hdmf_class(ImagingPlane) imaging_plane_schema["properties"]["optical_channel"].pop("maxItems") metadata_schema["properties"]["Ophys"]["definitions"] = dict( Device=get_schema_from_hdmf_class(Device), ImagingPlane=imaging_plane_schema, ) photon_series = dict( OnePhotonSeries=OnePhotonSeries, TwoPhotonSeries=TwoPhotonSeries, )[self.photon_series_type] metadata_schema["properties"]["Ophys"]["definitions"].update( { self.photon_series_type: get_schema_from_hdmf_class(photon_series), } ) fill_defaults(metadata_schema, self.get_metadata()) return metadata_schema
[docs] def get_metadata( self, ) -> DeepDict: """ Retrieve the metadata for the imaging data. Returns ------- DeepDict Dictionary containing metadata including device information, imaging plane details, and photon series configuration. """ from ...tools.roiextractors import get_nwb_imaging_metadata metadata = super().get_metadata() default_metadata = get_nwb_imaging_metadata(self.imaging_extractor, photon_series_type=self.photon_series_type) metadata = dict_deep_update(default_metadata, metadata) # fix troublesome data types if "TwoPhotonSeries" in metadata["Ophys"]: for two_photon_series in metadata["Ophys"]["TwoPhotonSeries"]: if "dimension" in two_photon_series: two_photon_series["dimension"] = list(two_photon_series["dimension"]) if "rate" in two_photon_series: two_photon_series["rate"] = float(two_photon_series["rate"]) return metadata
[docs] def get_original_timestamps(self) -> np.ndarray: reinitialized_extractor = self.get_extractor()(**self.extractor_kwargs) return reinitialized_extractor.frame_to_time(frames=np.arange(stop=reinitialized_extractor.get_num_frames()))
[docs] def get_timestamps(self) -> np.ndarray: return self.imaging_extractor.frame_to_time(frames=np.arange(stop=self.imaging_extractor.get_num_frames()))
[docs] def set_aligned_timestamps(self, aligned_timestamps: np.ndarray): self.imaging_extractor.set_times(times=aligned_timestamps)
[docs] def add_to_nwbfile( self, nwbfile: NWBFile, metadata: Optional[dict] = None, photon_series_type: Literal["TwoPhotonSeries", "OnePhotonSeries"] = "TwoPhotonSeries", photon_series_index: int = 0, parent_container: Literal["acquisition", "processing/ophys"] = "acquisition", stub_test: bool = False, stub_frames: int = 100, always_write_timestamps: bool = False, ): """ Add imaging data to the NWB file Parameters ---------- nwbfile : NWBFile The NWB file where the imaging data will be added. metadata : dict, optional Metadata for the NWBFile, by default None. photon_series_type : {"TwoPhotonSeries", "OnePhotonSeries"}, optional The type of photon series to be added, by default "TwoPhotonSeries". photon_series_index : int, optional The index of the photon series in the provided imaging data, by default 0. parent_container : {"acquisition", "processing/ophys"}, optional Specifies the parent container to which the photon series should be added, either as part of "acquisition" or under the "processing/ophys" module, by default "acquisition". stub_test : bool, optional If True, only writes a small subset of frames for testing purposes, by default False. stub_frames : int, optional The number of frames to write when stub_test is True. Will use min(stub_frames, total_frames) to avoid exceeding available frames, by default 100. """ from ...tools.roiextractors import add_imaging_to_nwbfile if stub_test: stub_frames = min([stub_frames, self.imaging_extractor.get_num_frames()]) imaging_extractor = self.imaging_extractor.frame_slice(start_frame=0, end_frame=stub_frames) else: imaging_extractor = self.imaging_extractor metadata = metadata or self.get_metadata() add_imaging_to_nwbfile( imaging=imaging_extractor, nwbfile=nwbfile, metadata=metadata, photon_series_type=photon_series_type, photon_series_index=photon_series_index, parent_container=parent_container, always_write_timestamps=always_write_timestamps, )