Source code for neuroconv.datainterfaces.ecephys.spikegadgets.spikegadgetsdatainterface
from typing import Optional
from pydantic import ConfigDict, FilePath, validate_call
from ..baserecordingextractorinterface import BaseRecordingExtractorInterface
from ....utils import ArrayType, get_json_schema_from_method_signature
[docs]class SpikeGadgetsRecordingInterface(BaseRecordingExtractorInterface):
"""
Data interface class for converting data in the SpikeGadgets format.
Uses :py:class:`~spikeinterface.extractors.SpikeGadgetsRecordingExtractor`.
"""
display_name = "SpikeGadgets Recording"
associated_suffixes = (".rec",)
info = "Interface for SpikeGadgets recording data."
[docs] @classmethod
def get_source_schema(cls) -> dict:
source_schema = get_json_schema_from_method_signature(cls, exclude=["source_data"])
source_schema["properties"]["file_path"].update(description="Path to SpikeGadgets (.rec) file.")
return source_schema
@validate_call(config=ConfigDict(arbitrary_types_allowed=True))
def __init__(
self,
file_path: FilePath,
stream_id: str = "trodes",
gains: Optional[ArrayType] = None,
verbose: bool = False,
es_key: str = "ElectricalSeries",
):
"""
Recording Interface for the SpikeGadgets Format.
Parameters
----------
file_path : FilePath
Path to the .rec file.
gains : array_like, optional
The early versions of SpikeGadgets do not automatically record the conversion factor ('gain') of the
acquisition system. Thus, it must be specified either as a single value (if all channels have the same gain)
or an array of values for each channel.
es_key : str, default: "ElectricalSeries"
"""
super().__init__(file_path=file_path, stream_id=stream_id, verbose=verbose, es_key=es_key)
if gains is not None:
if len(gains) == 1:
gains = [gains[0]] * self.recording_extractor.get_num_channels()
self.recording_extractor.set_channel_gains(gains=gains)