Source code for neuroconv.datainterfaces.ecephys.intan.intandatainterface

from pathlib import Path

from pydantic import FilePath
from pynwb.ecephys import ElectricalSeries

from ..baserecordingextractorinterface import BaseRecordingExtractorInterface
from ....utils import get_schema_from_hdmf_class


[docs]class IntanRecordingInterface(BaseRecordingExtractorInterface): """ Primary data interface class for converting Intan data using the :py:class:`~spikeinterface.extractors.IntanRecordingExtractor`. """ display_name = "Intan Recording" associated_suffixes = (".rhd", ".rhs") info = "Interface for Intan recording data." stream_id = "0" # This are the amplifier channels, corresponding to the stream_name 'RHD2000 amplifier channel'
[docs] @classmethod def get_source_schema(cls) -> dict: source_schema = super().get_source_schema() source_schema["properties"]["file_path"]["description"] = "Path to either a .rhd or a .rhs file" return source_schema
def _source_data_to_extractor_kwargs(self, source_data: dict) -> dict: extractor_kwargs = source_data.copy() extractor_kwargs["all_annotations"] = True extractor_kwargs["stream_id"] = self.stream_id return extractor_kwargs def __init__( self, file_path: FilePath, verbose: bool = False, es_key: str = "ElectricalSeries", ignore_integrity_checks: bool = False, ): """ Load and prepare raw data and corresponding metadata from the Intan format (.rhd or .rhs files). Parameters ---------- file_path : FilePath Path to either a rhd or a rhs file verbose : bool, default: False Verbose es_key : str, default: "ElectricalSeries" ignore_integrity_checks, bool, default: False. If True, data that violates integrity assumptions will be loaded. At the moment the only integrity check performed is that timestamps are continuous. If False, an error will be raised if the check fails. """ self.file_path = Path(file_path) init_kwargs = dict( file_path=self.file_path, verbose=verbose, es_key=es_key, ignore_integrity_checks=ignore_integrity_checks, ) super().__init__(**init_kwargs)
[docs] def get_metadata_schema(self) -> dict: metadata_schema = super().get_metadata_schema() metadata_schema["properties"]["Ecephys"]["properties"].update( ElectricalSeriesRaw=get_schema_from_hdmf_class(ElectricalSeries) ) return metadata_schema
[docs] def get_metadata(self) -> dict: metadata = super().get_metadata() ecephys_metadata = metadata["Ecephys"] # Add device system = self.file_path.suffix # .rhd or .rhs device_description = {".rhd": "RHD Recording System", ".rhs": "RHS Stim/Recording System"}[system] intan_device = dict( name="Intan", description=device_description, manufacturer="Intan", ) device_list = [intan_device] ecephys_metadata.update(Device=device_list) electrode_group_metadata = ecephys_metadata["ElectrodeGroup"] for electrode_group in electrode_group_metadata: electrode_group["device"] = intan_device["name"] # Add electrodes and electrode groups ecephys_metadata.update( ElectricalSeriesRaw=dict(name="ElectricalSeriesRaw", description="Raw acquisition traces."), ) return metadata